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Abstract-The heat transfer to spherical-cap bubbles, each consisting of a growing vapor phase and a 
reducing yet-to-be vaporized liquid phase, is considered. The liquid phase is supposed to form, in each 
bubble, a bottom layer supported by the flat base of the bubble, while the rest is occupied by the heat 
insulating vapor phase. The heat transfer causing the evaporation is thus assumed to occur exclusively at 
the rear of the bubble covered with a wake. Predictions of quasi-steady, overall heat transfer are made and 

compared with relevant experimental results. 

1. INTRODUCTION 

IN THE course of evaporation of a liquid drop in an 
immiscible liquid, a ‘two-phase bubble’ consisting of 
a growing vapor phase and a reducing liquid phase is 

evolved from the drop. The two-phase bubble changes 
its shape from nearly spherical to oblate ellipsoidal, 

and probably to spherical cap [l] so far as the con- 
tinuous phase is of a not-too-viscous liquid such as 
water or brine-a situation encountered in various 

engineering applications such as direct-contact boilers 
for power plant use, slush-ice cool storage facilities, 

etc. The larger the drop set to evaporate is, the rela- 
tively earlier in the whole evaporation process the 

two-phase bubble will attain the spherical-cap shape. 
In this paper we are concerned with the heat transfer 

to each two-phase bubble that has attained the spheri- 
cal-cap shape. 

A number of studies have been performed on single- 

phase spherical-cap bubbles as reviewed by Wegener 

and Parlange [2] and Clift et al. [3], and it has been 
established that the spherical-cap shape prevails when 
Eo > 40, where Eo is the Eotvbs number defined as 

Eo = ApgD’/a. (1) 

Here we assume that the same rule is applicable to the 
shape of two-phase bubbles provided that we sub- 
stitute the interfacial tension at the ‘vapor/continuous 
phase’ boundary for cr and the difference between pc, 

the density of the continuous phase, and the mean 
density of the bubble for Ap. Figure 1 shows the 
dependencies, on the drop diameter D, and on the 
pressure p,, of the mass fraction of vapor in each 
bubble, 4, satisfying the condition that Eo = 40. In the 
case of n-pentane drops evaporating in water as exem- 
plified here, we note that the spherical-cap can be 
the basic shape of each bubble through a significant 
portion of its evaporation process whenever D, is as 

large as several millimeters and pno is no more than 
several atmospheres. 

In spite of its practical importance observed in the 

above example, little has been clarified about the heat 
transfer to spherical-cap-shaped two-phase bubbles. 
Klipstein [l] considered that each spherical-cap 
bubble has a dimpled bottom, which supports an 

annular pool of the yet-to-be vaporized liquid, and 
that the heat transfer across the liquid/liquid interface 
at the bottom of the bubble is the major portion of the 
total heat transfer to the ‘vapor/yet-to-be vaporized 

liquid’ interface, i.e. the vapor-generating interface 

inside the bubble. Later Simpson et al. [4] presented 
an analytic study of heat transfer to a cylindrical-cap 

bubble-a two-dimensional analog of a spherical-cap 
bubble-based on a completely different modeling of 

the behavior of the yet-to-be vaporized liquid inside 
the bubble. They assumed that the oscillation of the 
bubble related to the wake shedding causes the yet- 

to-be vaporized liquid inside the bubble to slosh from 
side to side, forming a thin film spread over the front 

surface of the bubble. The heat transfer across the 
continuous-phase-side boundary layer over the front 

surface and then across the film of the yet-to-be vapor- 
ized liquid is considered. Comparing the results thus 
deduced analytically with those of experiments with 

butane drops evaporating in water or an aqueous 
solution of sodium chloride, Simpson et al. deter- 
mined the effective thickness of the film of the yet-to- 

be vaporized liquid and reached a conclusion that the 
film provides the major resistance against the heat 
transfer to the ‘vapor/yet-to-be vaporized liquid’ 
interface. 

The theoretical approach of Simpson et al. [4] is 

quite original and, in our opinion, debatable. The 
validity of the assumption of the thin liquid-film for- 
mation over the bubble surface is solely supported by 
the agreement, between their theoretical predictions 
and their own experimental results, in the tendency of 

63 



64 Y. H. MORI and N. EHARA 

A 

A 

‘4, 
b 

5 
D 

Eo 

f 
Fr 

9 

GW 

H 

hv 

K 

m 

n 

NU 

Pm 
Pe 
Pr 

Q 

r 

rI 

RC 
Re 
S 

Sr 

t 

NOMENCLATURE 

whole surface area of bubble 
surface area of sphere volume-equivalent 
to bubble 
base area of bubble 
width of bubble 
specific heat capacity 
diameter of sphere volume-equivalent to 

bubble 
Eiitvos number defined in equation (1) 
frequency of vortex shedding from wake 
Froude number, U2/gD 

acceleration due to gravity 
geometrical parameter defined in equation 

(6) 
vertical distance travelled by bubble 
latent heat of vaporization of the 
dispersed-phase substance 
one-half the height of the continuous phase 
above the elevation where evaporation 
starts 
overall heat transfer coefficient averaged 
over A, 
exponent of cosine in equation (25) 
exponent of s in equation (25) 
Nusselt number, cxD/& 

static pressure in the continuous phase 
P&let number, CID/K, 

Prandtl number, v,/K, 
heat transferred to bubble after the 
initiation of evaporation 
radial distance measured from bubble axis 
r at the outer edge of axisymmetrically- 
spread yet-to-be vaporized liquid 
radius of curvature at bubble front 
Reynolds number, UDjvc 
fraction of A,[ wherein the local thickness 
of yet-to-be vaporized liquid is larger 
than, or equal to, a particular value of 6 
Strouhal number, fb/U 
time lapse after the initiation of 

evaporation 
temperature at the liquid/vapor interface 
inside bubble, which is assumed, in 
experimental-data processing, to be the 
temperature at which pm is equal to the 
saturated vapor pressure of the dispersed- 
phase substance plus, if not negligibly 
small, that of the continuous-phase 
substance ; should be in Kelvins in 
equations (A4)-(A6) 

AT difference between undisturbed 
temperature in the continuous phase 
and T, 

U rise velocity of bubble 
V volume of bubble 
v* wake-to-bubble volume ratio. 

3reek 
c( 

%” 

x 

symbols 
continuous-phase-side heat transfer 
coefficient based on A, 

overall heat transfer coefficient based on 

A, 
continuous-phase-side heat transfer 
coefficient at the bubble rear 
constant used in equation (14) 
local thickness of yet-to-be vaporized 
liquid 

critical value of Gfor the onset of dry-patch 
growth in the layer of yet-to-be 
vaporized liquid 
maximum of 6 
S averaged over A, 
6 averaged over A,[ 

fraction of A, covered with yet-to-be 
vaporized liquid 
polar angle at the bubble rim 
thermal diffusivity 
thermal conductivity 
kinematic viscosity 
mass fraction of vapor in bubble 
mass density 
‘vapor/continuous-phase liquid’ 
interfacial tension 
ratio of dissipation rate by turbulent 
motion to the total energy dissipation 
rate 
constant indicating the ratio of (8, - 6) to 

@W-J). 

Subscripts 
C continuous-phase liquid 
dl dispersed-phase substance in the state of 

saturated liquid 

dv dispersed-phase substance in the state of 
saturated vapor 

m mean value in the continuous phase or 
local value at H = H,,, 

0 initial condition before the onset of 
evaporation. 

the instantaneous heat transfer coefficient to increase of Sideman and Taitel [5] and those in our laboratory 
with progress of evaporation. However, such a tend- [6] show such a tendency that the instantaneous heat 
ency is not necessarily supported by the other exper- transfer coefficient decreases with progress of evap- 
imental results reported so far. In fact, the experiments oration over the major portion of each evaporation 
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FIG. 1. Vapor mass fraction yielding the minimal Eotviis 
number, Eo = 40, for the possible deformation of n-pentane 

two-phase bubbles in water into spherical caps. 

process. Another debatable question is that the tend- 
ency indicated by the experiments by Simpson et al. 

might also be simulated on the basis of a theoretical 
model greatly different from their film-formation 
model. 

In this paper, we present an analytic model which 
may be viewed as the reverse of the model of Simpson 
et al. We assume that the yet-to-be vaporized liquid 
inside a spherical-cap bubble wholly accumulates on 
its flat base. Consequently, the effective heat transfer 
area is the rear surface of the bubble that is totally 
covered with a wake. (In this respect, the present 
model constitutes a counterpart of another model that 
we recently developed to simulate the heat transfer 
through a wake behind a spherical two-phase bubble 
[7].) The predictions deduced from the present model 
are compared with relevant experimental results to 
evaluate to what extent the wake-region contributes 
to the heat transfer in real evaporation processes. 

2. SPECIFICATIONS OF ANALYTIC MODEL 

Figure 2 illustrates the two-phase bubble model 
outlined above. The model approximates each bubble 
as a segment of a sphere, with a flat base, facing a 
steady, uniform flow normal to the base. Flow sep- 
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\ 

FIG. 2. Spherical-cap bubble containing yet-to-be vaporized 
liquid on its nominally flat base. 

aration from the bubble invariably occurs at its rim, 
thus forming a wake extending over the full width of 

the bubble, b. The separation angle 0, is held constant 
during evaporation. In later calculations we exclu- 
sively assume that 0, = 50”, which is accepted as a 
good approximation for ordinary gas bubbles when- 
ever Eo > 40 and Re > 150 [3]. The yet-to-be vapor- 
ized liquid forms a layer spreading over the base of 
each bubble. The thickness of the layer may be spa- 
tially uneven at each instant and, at each location, it 
may fluctuate with time because of a distortion of 
the nominally-flat bubble base responding to vortex 
shedding from the wake and/or to some turbulence 
inside the wake. (It is assumed that the distortion of 
the bubble base gives no more than a negligible effect 
on geometrical parameters characterizing the bubble : 
i.e. b, R,, 8, and V, the volume of the bubble.) Heat 
is transferred from the external flow to the wake and 

then to the liquid/liquid interface at the bubble base, 
from where it is conducted across the yet-to-be vapor- 
ized liquid layer to its opposite surface contacting with 
the vapor. No heat flow through the front spherical 
surface of the bubble is considered. 

In calculations given in subsequent sections we 
necessarily use some geometrical relations relevant to 
the present bubble model. They are 

R” = (2G,)“3 
c 

b 2 sin 0, _ _ 

D (2G,)“3 

~ _ sin2 0, A 

A, -(2G,) 

where D and A, denote the diameter and the surface 
area, respectively, of a sphere having the same volume 
as that of the bubble, V; A, is the area of the flat base 
of the bubble : and 

G, = 2-3cose,+cos3e,. (6) 

Using equations (2) and (3) in addition to simple 
volume-diameter-t relations (Appendix in ref. [7]), 
we can derive the following expression for 8, the thick- 
ness of the yet-to-be vaporized liquid averaged over 
the area A, at each instant : 

which is used in evaluating the internal thermal resist- 
ance, i.e. the resistance to conductive heat transfer 
across the layer of the yet-to-be vaporized liquid. 

In the following we consider first the convective 
external heat transfer and then the internal and the 
overall heat transfer, analogously to ref. [7]. 
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3. EXTERNAL HEAT TRANSFER 

In this work, we do not attempt an essentially ori- 
ginal analysis of the heat transfer to the rear of a 
spherical-cap bubble, but simply substitute existing 
solutions for the mass transfer from spherical-cap 
bubbles for the solution to the present problem. Two 
different solutions for the mass transfer are 
considered. The procedure of applying each of them 
to the present problem is explained below. 

where I- designates a constant that originally means 
a proportional factor between ~,/(p~c,J (the equi- 
valent of mass transfer coefficient) and the square root 
of K, multiplied by the surface renewal rate; x is the 
ratio of the dissipation rate by turbulent motion to 
the total energy dissipation rate ; and V* the wake-to- 
bubble volume ratio. Equation (14) can be reduced to 
a dimensionless form as 

3.1. Application of Weber ‘s solution 

Weber [8] studied the mass transfer from the rear of 
a spherical-cap bubble on the basis of the penetration 

theory, assuming a characteristic contact time which 
is equal to the interval of the vortex shedding from 
the wake trailed by the bubble. He derived a solution 
for the time-averaged mass transfer coefficient, which 

can be translated into the expressions for TV,, the heat 
transfer coefficient which is to prevail evenly over the 
area A,, and for LY, the coefficient averaged over the 

area A,, as 

Equation (9) can be rewritten in dimensionless form 
as 

(10) 

Utilizing equation (4) gives 

Nu = sin’& “’ 

( > XC, 
Sr l/2 pe 111. (11) 

For further simplification, we specify 8, and Sr. 0, is 
set at 50” as explained before. The results of Lindt 
and de Groot’s experiments [9] indicate that Sr = 0.3 
is a good approximation in the range of Re 3 2500. 
With these specifications of 0, and Sr in equations 
(4), (6) and (1 l), equations (8) and (11) are rewritten 
respectively as 

(12) 

Nu = 0.357Pe”‘. (13) 

3.2. Application of Coppus and Rietema’s solution 

Coppus and Rietema [lo] dealt with the same prob- 
lem as the one studied by Weber [8] but with an idea 

2 

t 

I Coppus and Rietema’s data 

0 Other researchers’ data 

10-Z’ I I I I11111 I II 
103 2 4 6 810~ 2 4 

Re 
that the mass transfer is controlled by the renewal of 
the surface at the bubble rear due to small-scale eddies 

FIG. 3. Curve-fitting correlations for the lead constant, Tx”~, 

in the wake. The solution they reached is rewritten for 
in Coppus and Rietema’s expression for mass (or heat) trans- 
fer coefficient at the rear of a spherical-cap bubble, equation 

gu “4 
Lx, = l-~“4pccp,?c:‘2 -- ( > v*v, (14) 

Coppus and Rietema presented, in a graphical 
form, the Tx’j4 vs Re relation based on experimental 
results that they themselves and also some other 
researchers had obtained. We have prepared the fol- 
lowing correlations that represent, as demonstrated 
in Fig. 3, the TX ‘I4 vs Re relation with a reasonable 
accuracy : 

rxb4 = 1.2x IO-‘Re (Re < 6 x 103) (16a) 

rx1j4 = 4 x 103Re1i3 (6 x lo3 < Re < 2.5 x 104). 

(16b) 

The experimental results of Coppus et al. [ 1 l] indi- 
cate that V* can well be assumed constant at 22 over 
the Re range from 70 to 20 000. Substituting the con- 
dition that 0, = 50” into equation (5) leads to the area 
ratio A,/Ae = 0.763. Applying these specifications of 
rx l/4, V* and A,/A, to equations (14) and (15), we 

obtain 

a, = 5.54x 10~hRep,c,ICd’2(gU/v,)“4 

(Re < 6 x 103) (17a) 

x(r = 1.85 x 10~3Re”3p,c,,ti~!*(gU/v,)“4 

(6 x IO3 < Re < 2.5 x 104) (17b) 

and 

the case of heat transfer as (14). 
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Nu = 4.23 x lo- ‘Re7j4 Fr- 114 pr I/2 

(Re < 6 x 103) (18a) 

NM = 1.41 x ]O-3Re’31’2Fr~‘/4Pr’/2 

(6 x lo3 < Re < 2.5 x 10“). (18b) 

Since equations (18a) and (18b) are inadequate to 
be compared with existing empirical correlations for 

Nu on a Nu-Re diagram, we further simplify the 
former equations to eliminate Fr from them. This is 
achieved by introducing the Davies and Taylor equa- 
tion [12] for the terminal velocity of spherical-cap 
bubbles 

u = i (g~,Apip,) “2. (19) 

Substituting equation (3) into equation (19) and 
equating 0, to 50”, we obtain 

U = (0.507gDAp/p,) “2. (20) 

Since Ap/p, - 1 except at very early stages of evap- 
oration, equation (20) is approximated as 

Fr = U2/gD = 0.507. (21) 

Substitution of equation (21) into equations (18a) and 
(18b) leads to 

Nu = 5.01 x 10m6Re7/4 Pr’12 (Re < 6 x 103) 

(22a) 

Nu= 1.67~10~~Re”~‘~Pr’~~ 

(6 x lo3 ,< Re < 2.5 x 104). (22b) 

3.3. Comparison of theoretical and experimental 
results 

The expressions for Nu thus derived are compared 
with each other and with experimental correlations 
relevant to the evaporation of relatively large drops. 
Based on Nazir’s experimental data for n-butane 
drops of D, = 3.54.0 mm in water or aqueous 
sodium chloride solutions under atmospheric pressure 
[ 131, Smith [ 141 provided a correlation of the following 
form : 

NM = 0.072Re0-‘3 Pr’13. (23) 

Another experimental correlation we employ here for 
reference is one of the correlations that Shimaoka 
and Mori [6] recently prepared, arranging the data 
obtained with n-pentane drops of D, = 2.0-6.5 mm 
in water under pressures of 1 l&490 kPa ; that is 

Nu = 0.234Pe’12. (24) 

Equations (13) (22a), (22b), (23) and (24) are com- 
pared in Fig. 4. It should be remembered that the 

Nu 

103L 
- -Wake-region heat transfer 

- ----------Experimental 

t 

10J lo4 
Re 

FIG. 4. Comparison of equations (13), (22a) and (22b) 
with correlations for experimentally-determined Nusselt 
numbers, equations (23) and (24). Water under pressure of 
101.3 kPa and at a temperature of 4l.l”C is assumed as the 
continuous-phase liquid in the graphical plots of these equa- 
tions. Each graph line extends over a limited Re range in 
which the relevant equation is self-consistent or based on 

actual experimental data. 

continuous-phase-side Nusselt number as expressed 
by each of the former three equations should always 
be higher than the relevant experimentally-observed 
Nusselt number which must reflect a finite thermal 
resistance in each two-phase bubble in addition to the 
resistance in the continuous phase. Hence it turns out 
that equation (22a) tends to underestimate Nu with a 
decrease in Re. (Note that this does not necessarily 
mean that equation (22a) or Coppus and Rietema’s 
surface renewal model inadequately describes the 
actual heat transfer at the bubble rear, because the 
underestimation of Nu is possibly ascribable, at least 
in part, to the neglect of any heat transfer through 
the bubble front.) We should also note a significant 
difference between the predictions by equation (13) 
and those by equations (22a) and (22b). Unfor- 
tunately no experimental result is available with which 
we can evaluate the validities of those predictions and 
make a discrimination between the two theoretical 
models. In this context, we are compelled to use both 
of the models in parallel in the calculation scheme of 
overall heat transfer coefficient described in the next 
section. 

4. INTERNAL AND OVERALL HEAT 

TRANSFER 

As mentioned in Section 2, we consider one-dimen- 

sional, quasi-steady heat conduction across the layer 
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of the yet-to-be vaporized liquid supported by the 
nearly flat base of each bubble. The thickness of the 
layer may vary from place to place and from time to 
time. The layer does not necessarily cover all the base 
area A,. We denote the fraction of A, ‘wetted’ by 
the yet-to-be vaporized liquid by [ (< 1). The local 
thickness of the liquid layer at each instant, S, is con- 
sidered to be distributed in a range from 0 to a certain 
maximum, 6,,,. We assume that the distribution at 
any instant through each evaporation process is repre- 
sented by a simple formula 

where m = 0, 2 or 3, and n = 1 or l/2. 6, designates 
the liquid layer thickness averaged over the actually 
‘wetted’ area; that is 

5, = V,IA,( = s/c (26) 

where 6 is the liquid layer thickness averaged over the 
whole area of the bubble base, A,. The variable s 
means the fraction of the area A,[ wherein the local 
thickness is larger than, or equal to, a given value of 
6. The lead constant C is to be so determined as to 
satisfy the condition that 

s 

’ 6 

0 syds=’ 
(27) 

and it is specified in Table 1. The class of distributions 
represented by equation (25) with n = l/2 involves, as 
a particular (probably the simplest) case, rotationally 
symmetric distributions expressed as 

where 6,,, is no more than the thickness at the center 
of the bubble base, r the radial distance from the 
center, and r, the radius of the region ‘wetted’ by the 
yet-to-be vaporized liquid. The distributions given by 
equation (25) with the tabulated constants are illus- 
trated in Fig. 5. 

Successively we introduce a criterion about s,. We 
assume that the yet-to-be vaporized liquid is spread 
all over the bubble base as long as 6 (= V,/A,) is still 
larger than, or equal to, a certain critical thickness, 
S,.. As 6 decreases below 6,, in the course of evap- 

Table I. Constants represented by C in 
equation (25) 

m 

0 2 3 

37l 
n=l 1 2 

4 

0 
0 0.2 0.4 0.6 0.8 

_I 
1 

S 

FIG. 5. Assumptions for distribution of the thickness of the 
yet-to-be vaporized liquid on the base of a spherical-cap 

bubble. 

oration, dry patches grow on the base, thus reducing 
[ below unity and thereby moderating the decrease in 
6, compared to that in 5. The criterion is formulated 
as 

$2 6,,; s, = s, [ = 1 

6< 6,,; s, = S-t*@,,-S), 

[ = J/S, < 1 (29) 

where the constant $ is limited as 0 < II/ < 1. 
The overall heat transfer coefficient averaged over 

the bubble base is given by 

K=( (30) 

% *dl 

and it is readily converted into the conventionally- 
defined coefficient, i.e. the overall heat transfer 
coefficient based on the surface area of a volume- 
equivalent sphere, as 

(31) 

where the area ratio AT/A, is evaluated by equation 
(5). Figure 6 shows the predicted variations of tl and 
CI,, with the vapor mass fraction 5. Supposed here is 
the evaporation of an n-pentane drop of D,, = 6.2 mm 
in a medium of water which is under pressure of 
380 kPa and at a temperature in excess of 5 K over 
the saturation temperature of n-pentane. U and CI, are 
evaluated by equations (20) and (12), respectively. a,, 
is set at zero. Also shown in Fig. 6 for comparison are 
the results of three independent experimental runs 
that are the most relevant, among all of the runs 
performed in a recent experimental work in our lab- 
oratory [6], to the above-mentioned condition. Anal- 
ogously to the case of spherical bubbles dealt with in 
ref. [7], an increase in nonuniformity of 6 causes a 
reduction in the mean internal resistance and hence 
an increase in do,,. The agreement of the predictions 
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a, (experimental) 
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FIG. 6. Predicted variations of overall heat transfer coefficient 
c(,, (solid lines) and continuous-phase-side heat transfer 
coefficient rl (= (,4,/A&,) (chain line) during evaporation of 
an n-pentane drop in water. D,, = 6.2 mm, pm = 380 kPa. c(, 
is evaluated by equation (12). 6,, = 0. The left-hand end of 
each graph line corresponds to the condition that Eo = 40. 
Also shown by dotted lines for comparison are exper- 
imentally observed variations of u,, for D, = 6.2kO.2 mm 
and p,_ = 382k 19 kPa, which are arranged from the raw 

data obtained by Shimaoka and Mori [6]. 

with relevant experimental results may be said to be 
better in this case than in the case of spherical bubbles, 
as far as the magnitudes of CI,, in an intermediate 
range of 5 are concerned. Nevertheless, the predictions 
fail to simulate the experimentally observed pattern 
of tl,, variation with 5. The sharp drop of CY,, at later 
stages of evaporation, which is recognized in every 
experimental run, is ascribable to the growth of the 
‘dry area’ on the bubble base, and can be simulated 
to some extent by substituting some finite value of a,, 
into the calculation procedure. Figure 7 shows the 
predictions based on the assumption that 6,, = 70 pm, 
while m and n are fixed to 3 and l/2, respectively. In 
(a) CC, is evaluated by equation (12) while in (b) it is 
evaluated by equation (17a) or (17b). The latter yields 
a slightly steeper increase of CI,, with 5 whenever 
8 > &,. The manner of the drop of c(,,, with a further 
increase of 5 resulting in a decrease of 6 below a,,, is 
strongly dependent on $. Upon comparison with the 
experimental results shown in Fig. 6, tj N 0.1 may be 
called a rather realistic approximation. 

Finally, we compare in Fig. 8 predictions according 
to the physical model presented in this paper with 
possibly relevant results obtained by some other 
researchers through experiments on evaporation of n- 
butane drops in water or an aqueous solution under 
the atmospheric pressure. Fortunately, these results 
are available in the form of correlations that can be 
used to calculate a,,-( relations (see Appendix). They 
are: (a) the time-to-nth power expressions (n is an 
empirical constant) for the heat transferred to, and 
the distance passed by, each two-phase bubble in each 
of three particular runs (Nos. 4143) in Sideman 
and Taitel’s experiments [5], dealing with the largest 
butane drops (D, = 3.8G3.86 mm) in sea water; 
(b) the semi-empirical correlation for a,, derived by 

2- 
Y 
"E 
2 l- 

0.8 - 

; 0.6 I 

0.4 - 

0.2- 

O.lol----- 
02 04 06 06 1 

f 

(4 

1.1. 
0 0.2 0.4 0.6 0.6 

t 

(b) 

FIG. 7. Predictions of aoV for different specifications for the 
contraction of the yet-to-be vaporized liquid over the base 
of a spherical-cap bubble. m = 3, n = l/2, a,, = 70 pm. a, is 
evaluated by equation (I 2) in (a) and by equations (17a) and 
(17b) in (b). For other information, consult the caption to 

Fig. 6. 

0.4 - 

0.2 

t 
0.1 ' I I I 

0 0.2 0.4 0.6 0.6 1 
L- 

FIG. 8. Variation of a,, during evaporation of an n-butane 
drop in water or an aqueous solution under atmospheric 
pressure (101.3 kPa). Compared are the predictions based 
on the present wake-region heat transfer model for the con- 
ditions that D, = 3.8 mm, m = 3, n = l/2, and 6,, = I5 pm ; 
the results of Runs 4143, in Sideman and Taitel’s exper- 
iments [S], that dealt with drops of Do = 3.8G3.86 mm in 
sea water; equations (32). the semi-empirical correlation by 
Simpson et al. [4]; and Mokhtarzadeh-Dehghan and El- 
Shirbini’s correlations fitted to their data obtained at 

AT N 2.5 and 4.0 K, respectively [15]. 
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Simpson et al. [4], which shows excellent agreement 
with their own experimental data obtained with 
butane drops of D, = 3.54.0 mm in water or in 4 
or 8% aqueous sodium chloride solution ; and (c) the 

curve-fitting polynomials prepared by Mokhtarzadeh- 
Dehghan and El-Shirbini [15] to represent their c(,,- 
D/D, data obtained with butane drops of D, = 3% 
4.2 mm in water at two different levels of the tem- 
perature difference AT. The correlation of Simpson et 

al. stands on their own theoretical model discussed in 
Section 1. It is given by 

2.57(0/D,) If6 
u 

‘” = 1 +0.206(D/D,)5!‘2 (32) 

where D/D,, is readily related to 5 as indicated by 
equation (A7) in the Appendix. (Straightforward use 
of these correlations yields LX,, changing only slightly 
even as iJ + 1. We assume this to be an unreal artifact 
ascribable to each correlation becoming increasingly 
inaccurate as < -+ 1.) 

In the calculation for drawing the two prediction 
curves in Fig. 8, we evaluated the properties of butane 
at its saturation temperature under 101.3 kPa, and 
those of water at a temperature 5 K higher but under 
the same pressure. t(, is calculated by use of equation 
(12). 6,, is assumed to be 15 pm, which has no theor- 
etical ground but makes M,, start to decrease, when- 

ever $ > 0, at a seemingly reasonable stage in the later 
part of each evaporation process. 

As already mentioned in Section 1, we readily recog- 
nize in Fig. 8 a significant discrepancy between 
Sideman and Taitel’s experimental results and the 
correlation provided by Simpson et al. The former 
resembles Shimaoka and Mori’s experimental results 
illustrated in Fig. 6 in the pattern of variation of 
xoV (except at later stages of evaporation), while the 
latter is in reasonably good agreement with 
Mokhtarzadeh-Dehghan and El-Shirbini’s exper- 
imental results. This discrepancy found in the exper- 
imental results from different sources cannot be ex- 
plained at present; it might be ascribed, at least in 
part, to different data-processing procedures em- 
ployed in deducing the results. The predictions 
according to the wake-region heat transfer model 
approximate the results of Simpson et al. and of 
Mokhtarzadeh-Dehghan and El-Shirbini in the pat- 
tern of variation of rx,, at intermediate-to-later stages 
of evaporation, while the predictions are closer to 
Sideman and Taitel’s results in the magnitude of CI,, 
at these stages. 

It appears on the whole that the wake-region heat 
transfer model possibly underestimates a,, at early 
stages of evaporation but gives rather good pre- 
dictions of CC,, values at intermediate-to-later stages. 
At early stages of evaporation, the volume of the yet- 
to-be vaporized liquid is relatively so large that some 
oscillatory motion of a bubble possibly makes a small 
fraction of the volume of the liquid periodically climb 
up the frontal bubble wall over a small distance from 

the rim of the bubble base. Even a rather short lati- 
tudinal distance tentatively wetted by the yet-to-be 
vaporized liquid may make a significant contribution 
to the total heat transfer, because of a large azimuthal 
periphery of a bubble near its rim, an excessively high 
continuous-phase-side heat transfer coefficient due to 
a very thin thermal boundary layer developing over 
the short latitudinal distance above the bubble rim, 
and a sufficiently small conductive resistance in a thin 
film of the yet-to-be vaporized liquid spreading over 
the distance. The underestimation, by the wake-region 
heat transfer model, of x,, at early stages of evap- 
oration seems to be ascribable to the neglect of pos- 
sible contribution of such a boundary-layer heat 
transfer as discussed above. As evaporation progresses, 

causing a decrease in the volume of the residual liquid 
in a bubble, the spreading of the liquid will necessarily 

be limited within the confines of the base of the bubble, 
thus resulting in a better agreement between the pre- 
dicted and the experimental values of CC,,. 

5. CONCLUDING REMARKS 

We have examined for the first time the heat transfer 
at the rear of a spherical-cap-shaped two-phase 
bubble forming in the course of direct-contact evap- 
oration of a liquid drop. An analytic model has been 
constructed, utilizing the penetration or the surface- 
renewal model to describe the external heat transfer 
and approximating the internal heat transfer by the 
heat conduction across the yet-to-be vaporized liquid 
unevenly distributed on the bubble base. Despite a 
considerable simplification in describing either heat 
transfer, the resultant predictions of overall heat 
transfer are considered reasonable upon comparison 
with experimental results from a few different sources. 
The model has of course left considerable room for 
further refinement, which should be done, in our 
opinion, in the light of detailed observations, with the 

aid of some adequate visualization technique, of each 
evaporating two-phase bubble and its wake. An exper- 
imental work in this direction is under way. 
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APPENDIX. PREPARATION OF EXPERIMENT- 
BASED a.,-< CURVES FOR BUTANE DROP 

EVAPORATION 

As already noted by Mokhtarzadeh-Dehghan and El-Shir- 
bini [15], there exist some inconsistencies in the definition of 
heat transfer coefficient in the literature dealing with evap- 
oration of butane drops in water or an aqueous solution. We 
have attempted to eliminate (or to minimize) the incon- 
sistencies, in rearranging the results given in the literature 
into a,,-< relations. The inconsistencies and some tricks we 
have used to eliminate them are specified here to leave no 
ambiguity concerning the comparison made in Fig. 8. 

In Sideman and Taitel’s paper [5], the heat transfer 
coefficient is related to A, the instantaneous bubble surface 
area determined photographically, and to AT,,,, the arith- 
metic mean of AT at the top and that at the bottom of their 
test column. (Note that AT = T, - T, and, in the extent of 
the current discussion, T, is given by the saturation tem- 
perature of the dispersed-phase substance corresponding to 
p,.) The surface area thus determined must be larger than 
A, to which the data and correlations from the other sources 
are related. A variable hydrostatic head experienced by each 
bubble during its ascent may yield a considerable fractional 

change in AT particularly when AT, is rather small. Thus, 
it is not necessarily reasonable to compare the values of the 
heat transfer coefficient graphically presented in ref. [5] with 
the results of other previous works as well as with our pre- 
dictions of a,,. Given below is a procedure we used to cal- 
culate from Sideman and Taitel’s data the a,,( relations 
illustrated in Fig. 8. 

Sideman and Taitel presented their data for each exper- 
imental run in the form of simple Q-t, A-t and H-f cor- 
relations, where t is the time lapse after the start of evap- 
oration of a drop, Q the heat transferred to a two-phase 
bubble evolved from the drop, and H the vertical distance 
travelled by the bubble. The second correlation is of no 
use here. Q must have been calculated from t’. which was 
measured photographically, assuming that 

Using equation (Al), we can calculate A, as 

and thereby G(,, as 

dQ/dt 
%v = m 

dQ/dt = 

nD;[l+i(l-$&r’AT’ 

(AlI 

(A21 

(A3) 

The variable temperature difference AT in equation (A3) 
is estimated on the basis of the ClausiusClapeyron equation, 
which can be written, if we assume an instantaneous equi- 
librium to be established inside a bubble, as 

Within a relatively small change in pm corresponding to the 
ascent of a bubble, the T,-p, relation is assumed to be linear 
with a good approximation. Integrating equation (A4) on 
this assumption, we obtain 

(A5) 

where H,,, is one-half the height of the continuous phase 
above the location where the evaporation starts, and T,, 
means T, corresponding to pm at H = H,. Equation (AS) is 
readily rewritten as 

(‘46) 

Substituting equation (A6) as well as the Q-t and H--t 
correlations into equation (A3), we can calculate a,, varying 
with t. The Q-t correlation is also utilized in calculating 5 as 
the ratio of Q to its final value. Simultaneous calculations of 
a,, and 5 reveal the cc& relation for the run of interest. 

Sideman and Taitel [5] specified neither the salinity con- 
centration in the sea water they used nor the height of the 
sea water in their test column, 2H,,,, in each run. In the 
computations to get the c(,,-t relations illustrated in Fig. 8, 
we assumed that the salinity was 35 wt%, 2H,,, = 0.6 m, and 
pm = 101.3 kPa at the elevation H = 2H,,,. The difference in 
the thermal conductivity between pure water and sea water 
(of about 35 wt% salinity) is less than 1.0% at temperatures 
of the present interest, and hence the c(,,l relations thus 
derived from Sideman and Taitel’s data for Runs 41-113 can 
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be compared, on a common basis, with the other results in 
Fig. 8. 

It seems that the semi-empirical correlation of Simpson er 
al. [4] is consistent with our definition of G(,,. Before pre- 
senting their correlations, Mokhtarzadeh-Dehghan and El- 
Shirbini [15] clearly stated their definition of aov, which 
exactly agrees with ours. Thus, we showed in Fig. 8 these 
correlations as they are, simply applying to them the 0/01,- 
to-5 conversion 

D”,= [,++-I)]“‘. (A7) 

A remark may be necessary on the possible effect of water- 

vapor pressure inside bubbles. Shimizu and Mori [16] sug- 
gested that T, should be evaluated as a temperature at which 
the sum of the vapor pressures of the dispersed-phase sub- 
stance and the continuous-phase substance, water, equals 
pa, Shimaoka and Mori’s experimental results plotted in Fig. 
6 as well as equation (24) are based on the above-mentioned 
evaluation of T, [6]. It is inconsistent but we have neglected, 
in deriving equation (A6), the water-vapor pressure ; so did 
Sideman and Taitel [5], Simpson et al. [4] and Mokhtar- 
zadeh-Dehghan and El-Shirbini [ 151. This inconsistency 
would have been serious for the evaporation of pentane 
drops, but is not for the evaporation of butane drops under 
the atmospheric pressure wherein the water-vapor pressure 
must be as low as 0.6 kPa or even lower. 

TRANSFERT THERMIQUE DE CONTACT DIRECT LIQUIDEPVAPEUR AU SOMMET 
SPHERIQUE DUNE BULLE DIPHASIQUE 

R&sum&On considtre le transfert thermique au sommet spherique des bulles entre une phase vapeur 
croissante et un phase liquide qui diminue par vaporisation. La phase liquide est suppoie former, dans 
chaque bulle, une couche inferieure support&e par la base aplatie de la bulle tandis que le reste est occupe 
par la phase vapeur. Le transfert de chaleur qui cause I’tvaporation est suppose optrer a l’arriere de la 
bulle couverte par le sillage. Les predictions du transfert thermique global permanent sont comparees avec 

les resultats expirimentaux correspondants. 

WARMEtiBERGANG DURCH DIREKTKONTAKT AN EINE ZWEIPHASIGE BLASE 
AUS DAMPF UND FLUSSIGKEIT MIT EINEM KUGELIGEN OBERTEIL 

Zusammenfassung-Es wird der Warmeiibergang an eine Blase mit kugelfiirmigem Oberteil betrachtet, die 
aus einer anwachsenden Dampfphase und einer geringerwerdenden noch zu verdampfenden fliissigen Phase 
besteht. Es wird angenommen, da13 die fliissige Phase den unteren flachen Teil des Volumens einnimmt, 
wihrend der Rest von der isolierenden Dampfphase ausgefiillt wird. Der Warmeiibergang, welcher die 
Verdampfung hervorruft, wird daher wohl ausschlieI3lich an der Riickseite der Blase im Nachlaufgebiet 
auftreten. Der quasistationlre Gesamtwarmeiibergang wird berechnet und mit geeigneten Versuchs- 

ergebnissen verglichen. 

KOHTAKTHMI? TEHJIOIIEPEHOC K IIAPOXHAKOCTHOMY ABYXd’ASHOMY 
IIOJIYC@EPH9ECKOMY IIY3bIPbKY 

AnmoTauJlPkcne~yeTcn rennoneperioc K nonyc@pmiecrcriM ny3bIpbKaM, xa;Knbrii 113 KOTOpbIX 

COCTO~ 83 pacrymeii naponoii +asbr B yMeHbuamuieficn,er.ue He ucnaptisruelca mimoii +asbI.IQ-en- 

nonaraerca, ST0 B KamOM ny3bIpbKe xcwKall @asa o6pa3yeT HmKHHii CJlOii Ha ILilOCKOM OCHOBaHWH 

ny3blpbKa, a OCTaJIbHOii 06%~ ny3bIpbKa 3anOJlHeH TetLlIOH3OJIEipylOI4eii IIapOBOii @asOk OTCEOAa 

AenaeTCn npennonomesae, *To ebr3bmammefi ucnapemie rennonepem3c nponcxoJmT m3Kmo9nrenbtro a 
numrrefi Yacrri nysbtpbra. llp0~0i~iTca cpaBHeme pacveros ncen~ocramionaprroro cyivfMapnor0 reruro- 

nC~H-CCOOTBeT~By~mHM~3KCnepHMe"Tanb"b~MaAaHHbIMa. 


